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ABSTRACT: Ni�phosphine complexes were used as
catalysts for the cycloaddition of various ketenes and diynes.
In general, 2,4-cyclohexadienones were formed instead of
products arising from decarbonylation of the ketenes.

Almost every possible unsaturated starting material (alkynes,
alkenes, dienes, CO2, nitriles, isocyanates, carbonyls, etc.)

has been employed as a substrate in transition-metal-catalyzed
cycloadditions.1,2 Despite this rich history of cycloaddition chemistry,
ketene substrates are notoriously absent.3 Insufficient reactivity
between potential transition-metal catalysts and ketenes is not the
problem. Ketenes easily form η2 complexes with various metals (Ni,
Pd, Pt, Co, Rh, Ir, etc.).4,5 Furthermore, two modes of coordination,
C�O or C�C binding, are available to ketenes (Figure 1). The
inability of theseη2 complexes toundergo further reactionswithother
unsaturated coupling partners lies in their propensity to undergo
decarbonylation and form stable, unreactive M�CO complexes
(Scheme 1).4�6 In addition, ketenes often undergo homodimeriza-
tion under thermal conditions.7 In view of these pitfalls, we were
surprised and delighted to discover that Ni�phosphine catalysts
mediate the cycloaddition of ketenes and diynes to afford cyclohex-
adienones in good yields.8,9 Herein, we report these results.

We initially discovered that the combination of 10 mol % Ni-
(COD)2 and 10mol%DPPF successfully catalyzed the cycloaddition
of diyne 1 and phenyl ethyl ketene a (eq 1). The cycloaddition
afforded a carbocyclic product (1a) resulting from the coupling of the
C�C bond of ketene a rather than the pyran (1a0) that would have
resulted from the coupling of the C�O bond.2j,k Other ligands and
conditions were evaluated in an effort to optimize the reaction
conditions (Table 1). In most cases, byproducts arising from dimer-
ization of the diyne and ketene were observed (entries 1�8).
However, we found that high yields were obtained when either DPPF
or DPPB was employed as the ligand. Ultimately, the following
optimized conditions were employed: 5 mol % catalyst loading
[Ni(COD)2 andDPPB in 1:1 ratio] at a 0.1M reaction concentration
in toluene at 60 �C.10

Importantly, we found that ketenes other than a could be used
as substrates in the cycloaddition reaction and that a variety of
cyclohexadienones could be prepared under these optimized
reaction conditions (Table 2). For example, diyne 1 not only
reacted with ketene a but also with diaryl ketene b as well as
ketene c with increased steric hindrance (entries 1�3). Diynes
that are prone to cyclotrimerization side reactions,11 such as
phenyl-substituted diyne 2 and terminal diynes 3 and 4, were also
successfully converted to their respective cyclohexadienone

products in moderate yields (entries 4�6). In addition, cycload-
dition products could be prepared from sulfonamide diynes and
diyne�ethers (entries 7�9).

Diynes separated by a four-atom linker instead of a three-atom
linker afforded cyclohexadienones in higher yields (entries
10�18). For example, the reaction between diyne 7 and ketene
a afforded the product in 91% yield (entry 10) versus 82% with
diyne 1 (entry 1). We found that a ketene bearing an electron-
withdrawing group at the para position (�F; entry 13) enhanced
the formation of the carbocyclic product, whereas ketenes

Figure 1. Modes of ketene coordination.
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bearing an electron-donating group at the para position (�OMe,
�Me; entries 11 and 12) had the opposite effect. Interestingly,
the cycloaddition of diyne 7 and trimethylsilyl ketene i gave a
phenolic product resulting from a facile 1,3-silyl migration
(Figure 2).12 The reaction of ketene j afforded a spirobicyclic
product in good yield (entry 17). Again, terminal diynes 8
and 9 were also found to afford carbocyclic products, as
evidenced by the formation of 8a and 9a (entries 18 and 19
respectively).13

The standard reaction conditions were applied to unsymme-
trical diyne 10. We were delighted to obtain regioisomer 10a
selectively in 66% yield (eq 2). The regiochemistry of 10a was
determined by one-dimensional nuclear Overhauser effect
(nOe) spectroscopy.

The asymmetric formation of quaternary stereocenters re-
mains a formidable challenge for organic chemists.14 With this in
mind, we also investigated the development of an asymmetric

version of the cycloaddition reaction. Initial investigations em-
ploying (R)-BINAP as the ligand gave dismal results. That is, no

Table 2. Ni-Catalyzed Cycloaddition of Diynes and Ketenesa

aReaction conditions: Ni(COD)2 (5 mol %), DPPB (5 mol %), diyne
(1 equiv, 0.1 M), and ketene (1.2 equiv) in toluene at 60 �C for 5 h.
b Isolated yields. cAverage of at least two runs. dCrude ketene was used.

Table 1. Ni-Catalyzed Cycloaddition of Diynes and Ketenesa

Entry Ligand (Ln) Ni:Ln 1 % Conv.b 1a % Yieldb

1 IPrc 1:2 100 12

2 SIPrc 1:2 63 3

3 PPh3 1:2 100 39

4 PCy3 1:2 100 20

5 MePPh2 1:2 100 54

6 CyPPh2 1:2 100 31

7 DPPE 1:1 32 2

8 DCPE 1:1 22 �
9 DPPF 1:1 100 >99 (86)d

10 DPPB 1:1 100 86 (86)d

aReaction conditions: Ni catalyst (5 mol %), diyne (1 equiv, 0.05 M), and
ketene (1.2 equiv) in benzene at 60 �C for 12 h. bAnalyzed by GC using
decane as an internal standard. cThe catalyst solutions were equilibrated for
at least 6 h before use. dThe values in parentheses are isolated yields.

Figure 2. Proposed intermediate.
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reaction was observed under the standard reaction conditions (5
mol % catalyst and 0.1 M diyne at 60 �C in toluene). However, a
carbocyclic product was generated when the temperature was
elevated to 80 �C. Although a relatively low yield (38%) was
obtained, excellent enantioselectivity (99%)was observed (eq 3).
A higher yield was obtained when the reaction temperature
was increased to 100 �C. Gratifyingly, only a slight decrease
in enantioselectivity was observed at a higher temperature
(100 �C).

In conclusion, we have successfully incorporated ketenes in
[2þ 2þ2] cycloaddition reactions with diynes. Decarbonylation
of the ketene starting materials was not observed. Instead, a
variety of 2,4-cyclohexadienones were formed. An enantiopure
cyclohexadienone product was obtained when (R)-BINAP was
used as the ligand. Efforts to develop a general asymmetric
catalyst system and understand the mechanistic details of this
cycloaddition chemistry are underway.
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